Mulkerin Associates Inc.

7th Integrated CNS Conference

L-Band Commercial Communications Service for Unmanned Aircraft Systems

Tom Mulkerin

May 3, 2007

Content

- * Background
- ***** Unmanned Aircraft System Description
- * Communications Service Provider
- * ATC Communications Link
- * Control Link
- * Conclusion

Background

- ***** Unmanned Aircraft (UA) have evolved significantly from their first use over 90 years ago.
 - > Flying bombs during World War I
- * Radio controlled model aircraft also have been around for a long time
 - > Initially used by hobbyists
 - > Entrepreneurs are finding commercial uses; e.g., aerial photography of real estate and farmland
 - > Usage could be extended to provide traffic video during rush hours in metropolitan areas

Background

- Why aren't UAs providing rush hour traffic video today?
 - > A one-word answer "safety"
 - ➤ UAs must be segregated from other aircraft in the National Airspace System (NAS) until they can be shown to not be a hazard to other aircraft.
 - ➤ UAs that are providing border security fly within Temporary Flight Restricted (TFR) areas because not equipped to avoid other aircraft
- * Solution Build unmanned aircraft systems that have a demonstrated capability to safely fly near manned aircraft
- * Goal For an unmanned aircraft to be able to file a flight plan and fly in the NAS with no more restrictions than those imposed on a manned aircraft

Unmanned Aircraft System

* What is a UAS?

- > Aircraft segment
- > Control segment
- > Communications segment

Unmanned Aircraft

- UAs come in all sizes and levels of automation model airplane to the Global Hawk
- Level of flight control automation built into the aircraft varies
 - > Flight control surfaces on very small aircraft are generally controlled by the pilot
 - > Many of the large aircraft are semi or fully automated.
- * Key component is the communications equipment
 - > Aircraft sends telemetry data to the control station
 - > Aircraft receives commands from the control station
 - ➤ UAs under FAA control may relay the controller's transmissions to the pilot and the pilot's transmissions to the controller

Control Station

- Set of equipment used to control the flight of the UA
- * Pilot's location
- Vary in size: handheld device => room full of electronic and communications equipment
- **❖** Provides pilot ⇔ aircraft communications means
- * Supports two-way telemetry/command link with aircraft
- May support ATC voice/data link

LOS and BLOS Communications

- ***** Line of sight (LOS) communications means a direct path between the transmitting and receiving antennas
- **Beyond line of sight (BLOS)** communications means that a relay radio is employed
 - > Relay is usually a satellite for aviation

UAS Communications System Proposal

- * Commercial organization would provide UAS users with communications services
 - > Proposal based on the FAA making part of the 960 1024 MHz spectrum available to the service provider
 - > 960 1024 MHz band is in protected aviation spectrum
 - > Provide UAS users with the communications path from the control station to the UA
 - **♦** ATC Communications Link(s) for ATC VHF voice/data relay from the UA to the pilot and pilot to UA
 - **♦** Control Link for telemetry and command communications
 - > Nationwide service available to subscribers

Unmanned Aircraft Communications Paths

Communications Link Access

- * Service provider would establish a network of access points through which a UAS control station could establish communications with its UA.
- * Network design left to the service provider
 - ➤ Network must meet Required Communications Performance (RCP) requirements adopted by the FAA for safe UAS operations
- * Principal connectivity method between control station and service provider will probably be via landline
 - > Most likely a dedicated circuit
 - ➤ Dialup circuit acceptable if it can meet the FAA's RCP requirements for latency, integrity and availability

Protocols

- Service provider would define the physical and link layer protocols
- Users would have the flexibility to use proprietary protocols above the link layer

Service Provider's Network

- * Provide LOS communications
- * Multiple transmitters and receivers
- * Potential algorithm for selecting the transmitting site
 - > Multiple ground stations might receive a UA's transmissions
 - > Best signal would be routed to the control station
 - > System select the site that received the best signal for transmissions

ATC Communications Link

- * Initially carry VHF voice between ATC controller and pilot
- Later, carry Controller Pilot Data Link Communications (CPDLC) messages
- Support ATC Voice
 - > Voice transmissions received by the UA on a VHF radio
 - > Relay the transmission to the pilot at the control station via the ATC Communications link
 - > UA would carry a standard, certified VHF voice radio
 - ➤ Additional equipment on the UA would convert VHF radio's analog voice signal to digital and transmit on ATC Communications link
 - ➤ Equipment would convert digitized voice from pilot on the ATC Communications link to analog and rebroadcast it over the VHF radio

ATC Communications Link

- Multiple UAs operating in the same TRACON will be directed by different controllers
 - > Service provider's system must relay transmissions for each controller VHF voice frequency
 - > Could mean a separate ATC Communications link for each ATC controller
- * The same link might be used for both controller-to-pilot communications and telemetry/command data
 - ➤ Latency requirements for ATC Communications and Control link data will determine whether the link can be shared
 - ➤ Possibility of sharing the link increases as the FAA transitions from voice to data link for ATC functions

Multiple UAs Operating in the Same Area

ATC Voice Communications

- ***** What are the voice communications requirements?
 - > Yet to be defined
 - > FAA's Next Generation Air/Ground Communications System (NEXCOM) may be close to those for a UAS
 - > NEXCOM VHF radio had a digital voice channel designed for ATC voice communications
- * NEXCOM voice circuit availability requirement is 99.999%
- NEXCOM voice communications latency requirements are shown below

Path	Latency (95%)
Controller to Pilot	0.55 sec
Pilot to Controller	0.22 sec
Two-way	0.77 sec

ATC Communications Link

Support ATC Data Link

- > FAA is moving towards using data link as the primary means of communications in performance-based airspace
- > ATC Communications link would support exchange of CPDLC messages
- > VHF Digital Link Mode 2 (VDL-2) will probably be the protocol used by the FAA
- > UA would carry certified VHF data radio
- ➤ UA would have equipment needed to convert messages between the CPDLC and ATC Communications radios
- * Significantly more bandwidth needed to relay voice than CPDLC

ATC Communications Link

- * FAA transition from voice to data link will be implemented in three segments
 - > Segment 2 starts in 2017
 - ➤ Aircraft must be data communications equipped for access to performance-based airspace
- Link availability requirement: 99.999%
- * 95th percentile one-way transit times shown below

Domain	Threshold	Objective
En Route	3.0 sec	1.5 sec
Tower	3.0 sec	1.5 sec
Terminal	3.0 sec	1.5 sec

Control Link

- * Supports two-way communications associated with flying the aircraft
- Carries command and telemetry data
 - ➤ Data generated by detect, sense and avoid avionics is a subset of telemetry data
- * Bandwidth requirement will depend upon the level of autonomy needed to fly the UA
 - ➤ Link load for a UA that only accepts waypoint changes is significantly less than for a UA receiving control surface commands
- * Required Communications Performance (RCP) for highly autonomous UA will be less stringent than for UA which needs control surface commands from its control station

Control Link

- * RCP requirements for highly autonomous UAs may be similar to those for data linked ATC commands
 - > Changing flight path by transmitting new waypoints is similar to controller directing an aircraft via data link to change its heading
 - > 95th percentile one-way transit times
 - ♦ Threshold: 3 sec
 - ♦ Objective: 1.5 sec
- * More stringent latency requirements for UA with little autonomy
 - Specific requirements to be determined
 - > Requirements will probably vary by flight domain
 - ➤ Most stringent requirements may be on the order of 200 ms or less
- * Availability requirement probably independent of automation level
 - ➤ Likely to be 99.999%

Conclusion

* Commercial service in L-Band could be part of the solution for providing the communications needed by UAs to fly safely in the NAS

Contact

Tom Mulkerin

Mulkerin Associates Inc.
7405 Alban Station Ct., Suite B-201
Springfield, VA 22150-2318
(703) 644-5660
Tom.Mulkerin@Mulkerin.com